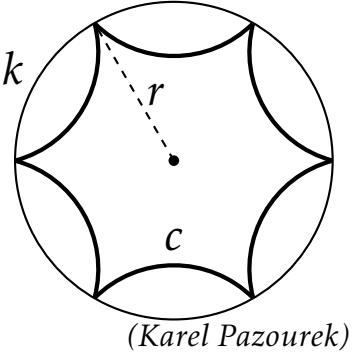


23. January 2026

Problem 1.

Let k be a circle with radius r . Additionally there are 6 congruent k quarter circles drawn as shown in the figure, forming a curve c . Determine the length of the curve c in terms of r .



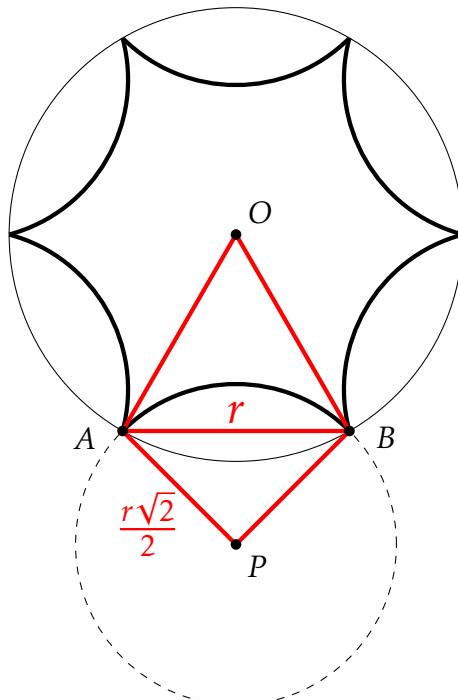
(Karel Pazourek)

Solution

Let O be the center of the circle and let A and B be two adjacent common points of c and k . Observe that $|OA| = |OB| = r$ and $|\angle AOB| = \frac{1}{6} \cdot 360^\circ = 60^\circ$, so the triangle AOB is equilateral, hence $|AB| = r$.

Let P be the center of the circle that contains the arc AB of curve c . This arc is a quarter circle, so $|\angle APB| = \frac{1}{4} \cdot 360^\circ = 90^\circ$, hence $|PA| = |PB| = \frac{r\sqrt{2}}{2}$. We can now calculate the length of c :

$$\text{length } (c) = 6 \cdot \text{length } (\text{arc } AB) = 6 \cdot \frac{1}{4} \cdot 2\pi \frac{r\sqrt{2}}{2} = \frac{3\sqrt{2}}{2} \pi r.$$



Problem 2.

Let ABC be a triangle satisfying $|AB| = |AC|$. Let M be the midpoint of BC . Let N be a point such that $AM \parallel CN$ and $|AN| = |MN|$. Determine the ratio of the areas of the triangles ABC and ANC .

(Marián Macko)

Solution

Let P be the midpoint of the segment AM . Triangle AMN is isosceles with base AM . Therefore N lies on the perpendicular bisector of segment AM , which is the line PN . Hence, we have that $AM \perp PN$.

Triangle ABC is isosceles as well, therefore $AM \perp BC$ as AM is the perpendicular bisector of BC . We also have that $CN \parallel AM$. Therefore $PMCN$ is a rectangle. We have

$$|NC| = |PM| = \frac{1}{2}|AM|.$$

We first calculate the area of triangle ANC :

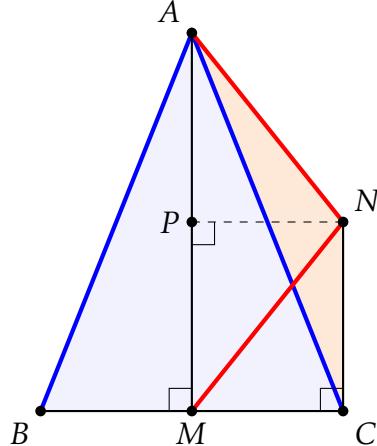
$$S_{ANC} = S_{AMCN} - S_{AMC}.$$

We aim to express each area in terms of $|AM|$ and $|BC|$.

We have:

$$S_{AMC} = \frac{1}{2}|AM| \cdot |CM| = \frac{1}{2}|AM| \cdot \frac{|BC|}{2} = \frac{1}{4}|AM| \cdot |BC|.$$

Quadrilateral $AMCN$ is a trapezium, therefore we can calculate its area using the lengths of the bases and the distance between them.



$$S_{AMCN} = \frac{1}{2}(|AM| + |NC|) \cdot |MC| = \frac{1}{2}(|AM| + \frac{1}{2}|AM|) \cdot \frac{|BC|}{2} = \frac{3}{8}|AM| \cdot |BC|.$$

And therefore

$$S_{ANC} = S_{AMCN} - S_{AMC} = \frac{3}{8}|AM| \cdot |BC| - \frac{1}{4}|AM| \cdot |BC| = \frac{1}{8}|AM| \cdot |BC|.$$

Finally, $S_{ABC} = \frac{1}{2}|AM| \cdot |BC|$ and therefore

$$\frac{S_{ABC}}{S_{ANC}} = \frac{\frac{1}{2}|AM| \cdot |BC|}{\frac{1}{8}|AM| \cdot |BC|} = 4.$$

Problem 3.

Let ABC be an acute triangle. Let P and Q be the midpoints of minor arcs AC and AB of the circumcircle of ABC , respectively. Let R and S be points on the lines AP and AQ , respectively, such that $AC \perp CR$ and $AB \perp BS$. Prove that the incenter of the triangle ABC lies on the line RS .

(Patrik Bak)

Solution

Let I denote the incenter of the triangle ABC . We will show that I is the foot of the perpendicular from A to RS , i.e. that the angles $\angle AIS$ and $\angle AIR$ are right. It suffices to show this.

We will show that the quadrilaterals $AIBS$ and $AICR$ are cyclic. Let α, β, γ denote the corresponding angles of the triangle ABC .

Since Q is the midpoint of the arc AB , we have $|QA| = |QB|$. Therefore

$$|\angle SAB| = |\angle QAB| = \frac{180^\circ - |\angle AQB|}{2} = \frac{180^\circ - (180^\circ - |\angle BCA|)}{2} = \gamma/2.$$

We may then compute $|\angle ASB| = 90^\circ - |\angle SAB| = 90^\circ - \gamma/2$.

Consider the triangle AIB . The angles $\angle BAI$ and $\angle ABI$ have measures $\alpha/2$ and $\beta/2$, respectively, so we get

$$|\angle AIB| = 180^\circ - \alpha/2 - \beta/2 = 180^\circ + \gamma/2 - (\alpha + \beta + \gamma)/2 = 180^\circ + \gamma/2 - 180^\circ/2 = 90^\circ + \gamma/2.$$

Now, clearly, the point S lies outside the triangle ABC and I lies inside, hence the points I and S lie on opposite sides of the line AB . Since

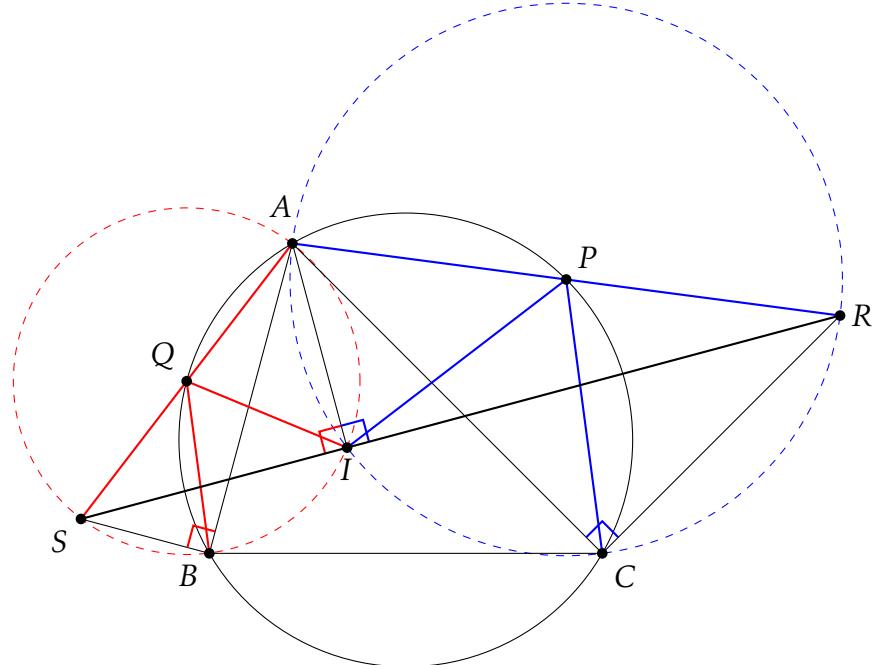
$$|\angle ASB| + |\angle AIB| = (90^\circ - \gamma/2) + (90^\circ + \gamma/2) = 180^\circ,$$

the points A, I, B and S lie on a circle. Similarly, the points A, I, C and R lie on a circle.

Since $|\angle ABS| = 90^\circ$ and $|\angle ACR| = 90^\circ$, the line segments AS and AR are diameters of the two circles, meaning

$$|\angle AIS| + |\angle AIR| = 90^\circ + 90^\circ = 180^\circ,$$

which implies that the three points R, I and S lie on a single line.



Remark. It is a well-known fact that the points A, I, B lie on a circle with circumcenter Q . This is a useful property worth remembering. Using this, one can quickly see that S also lies on this circle, as AS is the diameter.

Problem 4.

Let $ABCD$ be a convex quadrilateral such that there is a point P inside $ABCD$ for which $|AP| = |AB|$, $|DP| = |DC|$, $|\angle PBA| = 2|\angle PAD|$ and $|\angle PCD| = 2|\angle PDA|$. Let O be the circumcenter of triangle PBC and let M be the midpoint of OP . Prove that $|MA| = |MD|$.

(Michal Pecho)

Solution

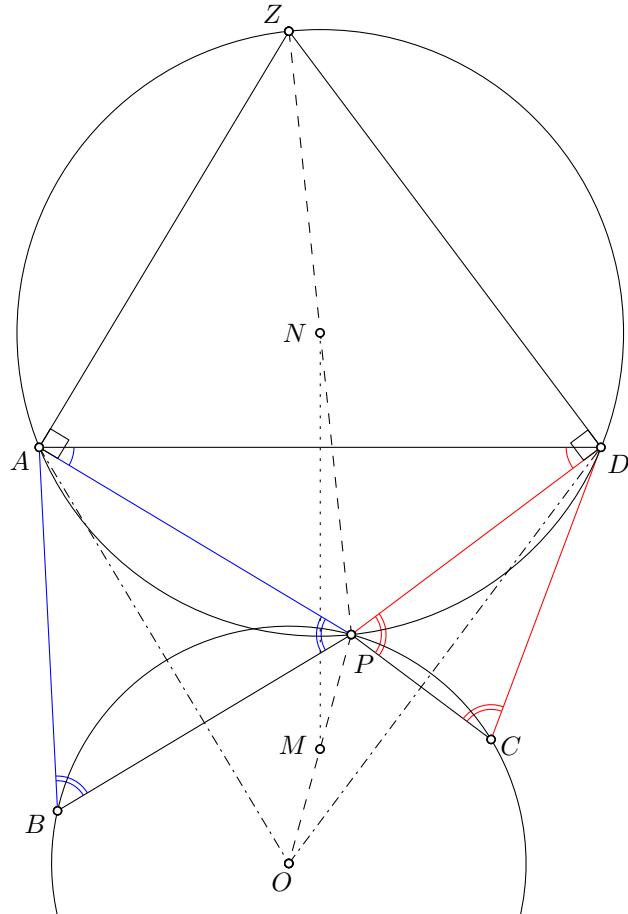
Points A and O lie on the perpendicular bisector of BP and points D and O lie on the perpendicular bisector of CP . An angle chase yields:

$$\begin{aligned} |\angle OAD| &= |\angle OAP| + |\angle PAD| \\ &= 90^\circ - |\angle BPA| + |\angle PAD| \\ &= 90^\circ - |\angle PBA| + |\angle PAD| \\ &= 90^\circ - 2 \cdot |\angle PAD| + |\angle PAD| \\ &= 90^\circ - |\angle PAD|. \end{aligned}$$

Analogously $|\angle ODA| = 90^\circ - |\angle PDA|$. Let Z be the reflection of O across AD . Note that $OZ \perp AD$. From symmetry, we get that $|\angle ZAD| = |\angle OAD|$ and $|\angle ZDA| = |\angle ODA|$. Therefore

$$\begin{aligned} |\angle ZAP| &= |\angle ZAD| + |\angle PAD| = 90^\circ - |\angle PAD| + |\angle PAD| = 90^\circ, \\ |\angle ZDP| &= |\angle ZDA| + |\angle PDA| = 90^\circ - |\angle PDA| + |\angle PDA| = 90^\circ, \end{aligned}$$

which means that Z lies on the circumcircle of triangle PDA and PZ is its diameter. Therefore, the midpoint N of segment PZ lies on the perpendicular bisector of AD . Since $MN \parallel OZ$ (as MN is a midline in $\triangle OPZ$) and $OZ \perp AD$, we get that $MN \perp AD$. Thus, line MN coincides with the perpendicular bisector of AD , so M lies on it, which implies $|MA| = |MD|$.



Solution II

Let P' and P'' be the reflections of P across the line AD and across the midpoint of AD , respectively. From the given angle conditions, we have

$$|\angle P'DP| = 2 \cdot |\angle ADP| = |\angle DCP| = |\angle DPC|,$$

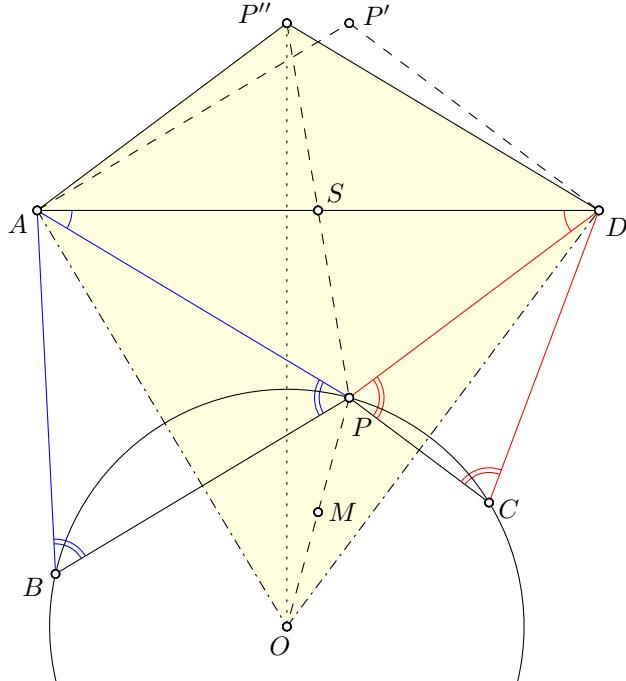
so $P'D \parallel PC$. Since the line DO is the perpendicular bisector of CP , we have $DO \perp PC$. Therefore, $P'D \perp DO$. Analogously, we can see that $P'A \perp AO$.

Let S be the midpoint of AD . Since S is also the midpoint of PP'' , the segment SM is a midline in triangle OPP'' , implying $SM \parallel P''O$. Thus, to show that M lies on the perpendicular bisector of AD (which passes through S), it suffices to show that $P''O \perp AD$.

We can now use the well-known fact that the diagonals of a quadrilateral $P''AOD$ are perpendicular if and only if the sums of the squares of its opposite sides are equal: $|P''D|^2 + |AO|^2 = |P''A|^2 + |DO|^2$. Using symmetry, we get:

$$|P''D|^2 + |AO|^2 = |P'A|^2 + |AO|^2 = |P'O|^2 = |P'D|^2 + |DO|^2 = |P''A|^2 + |DO|^2,$$

which implies $P''O \perp AD$ and completes the proof.



Problem 5.

Let $ABCD$ be a convex quadrilateral such that there is a point E on the side AB satisfying $|\angle ADE| = |\angle DEA| = |\angle DCE|$ and $|\angle ECB| = |\angle BEC| = |\angle EDC|$. Prove that one of the common tangents to the incircles of triangles AED and BEC is parallel to the line CD .

(Patrik Bak)

Solution

Let I and J be the incenters of triangles AED and BEC , respectively. Notice that

$$|\angle EID| = 180^\circ - |\angle IDE| - |\angle DEI| = 180^\circ - |\angle DEA| = 180^\circ - |\angle DCE|,$$

so the points C, D, E, I are concyclic. Analogously, the points C, D, E, J are concyclic. Hence, all five points C, D, E, I, J are concyclic.

One of the common tangents of the two incircles is the line AB – therefore another tangent line is the reflection of AB with respect to the line IJ . Let P, Q be the intersections of the reflected line with lines ED and EC , respectively. We will prove that PQ and CD are parallel by showing that $|\angle EPQ| = |\angle EDC|$.

Let R, S be the intersections of the line IJ with lines ED and EC , respectively. We calculate:

$$\begin{aligned} |\angle ERS| &= |\angle RIE| + |\angle REI| = |\angle JIE| + |\angle DEI| = |\angle ECJ| + |\angle EDI| = \\ &= |\angle CEJ| + |\angle EJI| = |\angle SEJ| + |\angle SJE| = |\angle RSE|. \end{aligned}$$

As PQ is the reflection of AB with respect to IJ , all three lines are parallel or concurrent.

a) We first look at the case where PQ, AB and IJ are all parallel. Then, by an angle chase, we get

$$|\angle EPQ| = |\angle ERS| = |\angle ESR| = |\angle BES| = |\angle BEC| = |\angle EDC|$$

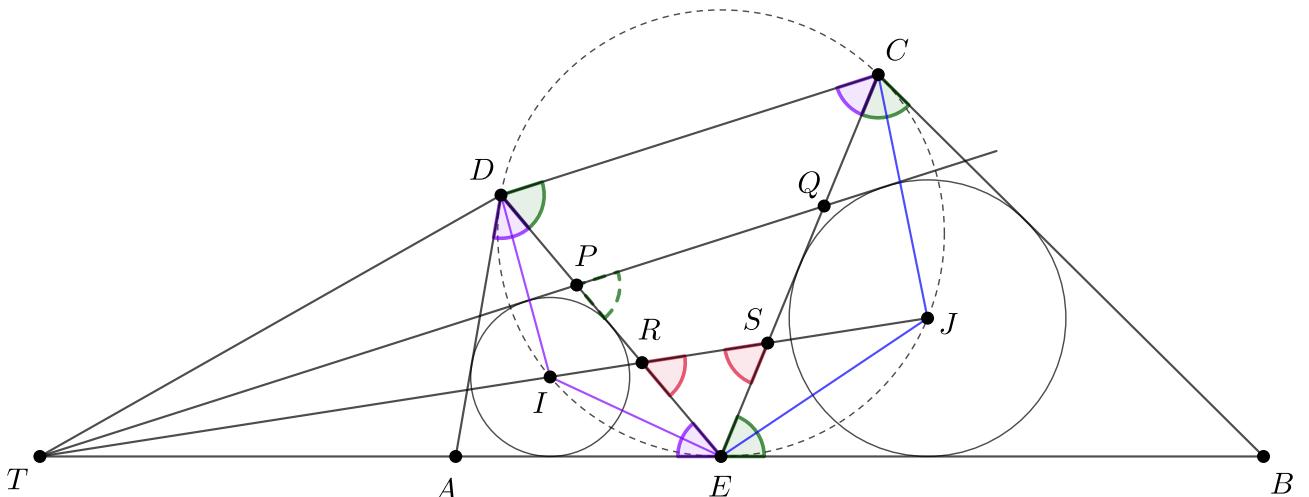
so the lines PQ and CD are parallel.

b) Suppose that the lines PQ, AB and IJ meet at a single point T . Then, by an angle chase, we get

$$\begin{aligned} |\angle EPQ| &= |\angle ETP| + |\angle PET| = 2 \cdot |\angle ETR| + |\angle RET| = |\angle ETR| + (|\angle ETR| + |\angle RET|) = \\ &= |\angle ETR| + |\angle ERS| = |\angle ETS| + |\angle EST| = |\angle BEC| = |\angle EDC|. \end{aligned}$$

Thus, in this case also, PQ and CD are parallel.

We have shown that in all cases PQ and CD are parallel, as we wanted to prove.



Problem 6.

Let ABC be an acute scalene triangle with incenter I . Let M be the midpoint of arc BAC of the circumcircle of triangle ABC . Points K and L lie on segments BM and CM , respectively, such that AK is tangent to the circumcircle of triangle AIC and AL is tangent to the circumcircle of triangle AIB . Prove that the points K, L, I are collinear.

(Patrik Bak)

Solution

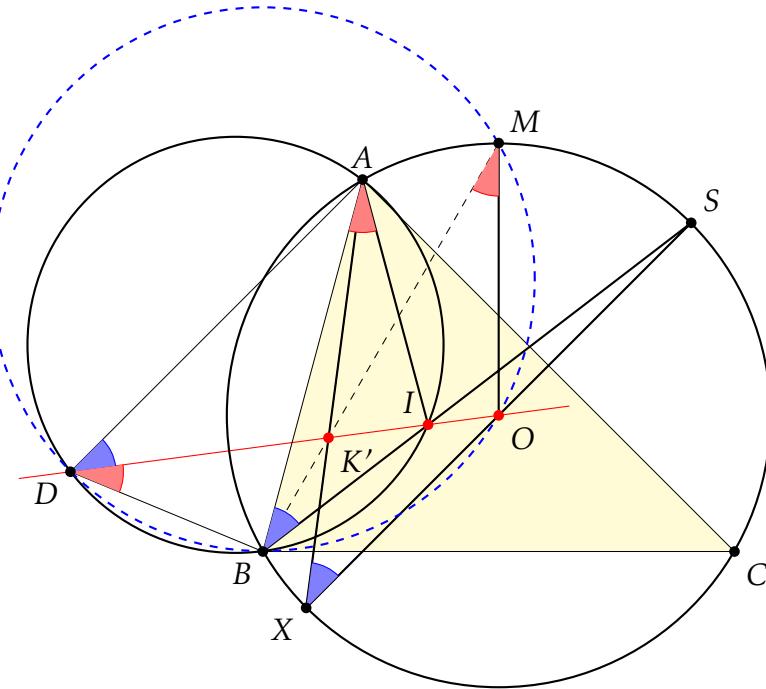
Let O be the circumcenter of triangle ABC and let K' be the intersection of the line IO with the tangent to the circumcircle of triangle AIC at point A . We will prove that K' lies on the line BM . This will imply that $K' = K$, and consequently, that points K, I , and O are collinear. By analogous reasoning, it will follow that L, I , and O are collinear, which will complete the proof.

Let D be the second intersection of the line OI and the circumcircle of triangle AIB . By a simple angle calculation, we get

$$|\angle BDO| = |\angle BDI| = |\angle BAI| = \frac{1}{2}|\angle BAC| = \frac{1}{2}|\angle BMC| = |\angle BMO|,$$

where we used that O lies on the angle bisector of $\angle BMC$. As $|\angle BDO| = |\angle BMO|$, points B, D, M, O lie on a circle.

Let X be the second intersection of the tangent to the circumcircle of triangle AIC at point A and the circumcircle of triangle ABC . Let S be the circumcenter of triangle AIC . It is well known that S is the midpoint of arc AC not containing B of the circumcircle of triangle ABC . Since XA is tangent to the circle AIC , we must have $AS \perp AX$, and therefore X, O, S are collinear.

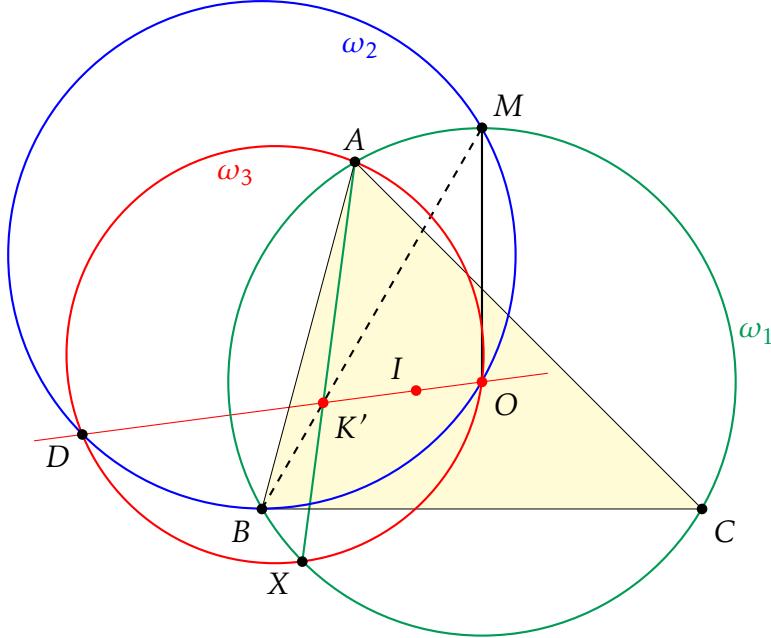


By an angle chase, we get

$$|\angle ADO| = |\angleADI| = |\angleABI| = |\angleABS| = |\angleAXS| = |\angleAXO|,$$

hence we have that A, D, X, O lie on a circle.

Denote by ω_1 the circumcircle of triangle ABC , ω_2 the circle through points B, D, M, O and ω_3 the circle through A, D, X, O . The line AX is the radical axis of circles ω_1 and ω_3 . The line DO is the radical axis of circles ω_2 and ω_3 . Therefore K' , which is the intersection of lines AX and DO , is the radical center of circles ω_1, ω_2 and ω_3 . Hence, K' also lies on the radical axis BM of circles ω_1 and ω_2 . Since K' lies on BM , it follows that $K' = K$ and that K, I, O are collinear, as discussed in the first paragraph.



Solution II (Using Pascal's Theorem)

Let O be the circumcenter of triangle ABC . We will prove that points K, O, I are collinear. Analogously, points L, O, I are collinear, which completes the proof.

Let N be the midpoint of the arc BC not containing A of the circumcircle of triangle ABC . Clearly, points M, O, N are collinear, and points A, I, N are collinear.

Let S be the circumcenter of AIC . It is well known that it is the midpoint of the arc AC not containing B and lies on the line BI . Let X be the second intersection of the line AK with the circumcircle of $\triangle ABC$. Since XA is tangent to the circle AIC , we must have $AS \perp AX$, and therefore X, O, S are collinear.

Now we can apply Pascal's theorem to the self-intersecting hexagon $AXSBMN$ to obtain that the intersection points of pairs of lines (AX, BM) , (XS, MN) , and (SB, NA) are collinear. These are points K, O, I , respectively, so we are done.

