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Problem 1.
Let k be a circle with radius r. Additionally there are 6 congruent
quarter circles drawn as shown in the figure, forming a curve c.
Determine the length of the curve c in terms of r.
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(Karel Pazourek)

Solution

Let O be the center of the circle and let A and B be two adjacent common points of c
and k. Observe that |OA| = |OB| = r and |<)AOB| = 1

6 · 360◦ = 60◦, so the triangle AOB is
equilateral, hence |AB| = r.

Let P be the center of the circle that contains the arc AB of curve c. This arc is a quarter
circle, so |<)APB| = 1

4 · 360◦ = 90◦, hence |PA| = |P B| = r
√

2
2 . We can now calculate the length

of c:

length (c) = 6 · length (arc AB) = 6 · 1
4
· 2πr
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Problem 2.
Let ABC be a triangle satisfying |AB| = |AC|. Let M be the midpoint of BC. Let N be a point
such that AM ∥ CN and |AN | = |MN |. Determine the ratio of the areas of the triangles ABC
and ANC.

(Marián Macko)

Solution

Let P be the midpoint of the segment AM. Triangle AMN is isosceles with base AM.
Therefore N lies on the perpendicular bisector of segment AM, which is the line PN . Hence,
we have that AM ⊥ PN .

Triangle ABC is isosceles as well, therefore AM ⊥ BC as AM is the perpendicular bisector
of BC. We also have that CN ∥ AM. Therefore PMCN is a rectangle. We have

|NC| = |PM | = 1
2
|AM |.

We first calculate the area of triangle ANC:

SANC = SAMCN − SAMC .

We aim to express each area in terms of |AM | and |BC|.
We have:

SAMC =
1
2
|AM | · |CM | = 1

2
|AM | · |BC|

2
=

1
4
|AM | · |BC|.

Quadrilateral AMCN is a trapezium, therefore we can calculate its area using the lengths
of the bases and the distance between them.
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SAMCN =
1
2

(|AM |+ |NC|) · |MC| = 1
2

(|AM |+ 1
2
|AM |) · |BC|

2
=

3
8
|AM | · |BC|.

And therefore

SANC = SAMCN − SAMC =
3
8
|AM | · |BC| − 1

4
|AM | · |BC| = 1

8
|AM | · |BC|.

Finally, SABC = 1
2 |AM | · |BC| and therefore

SABC
SANC

=
1
2 |AM | · |BC|
1
8 |AM | · |BC|

= 4.



Problem 3.
Let ABC be an acute triangle. Let P and Q be the midpoints of minor arcs AC and AB
of the circumcircle of ABC, respectively. Let R and S be points on the lines AP and AQ,
respectively, such that AC ⊥ CR and AB ⊥ BS. Prove that the incenter of the triangle ABC
lies on the line RS.

(Patrik Bak)

Solution

Let I denote the incenter of the triangle ABC. We will show that I is the foot of the
perpendicular from A to RS, i.e. that the angles <)AIS and <)AIR are right. It suffices to show
this.

We will show that the quadrilaterals AIBS and AICR are cyclic. Let α, β, γ denote the
corresponding angles of the triangle ABC.

Since Q is the midpoint of the arc AB, we have |QA| = |QB|. Therefore

|<)SAB| = |<)QAB| = 180◦ − |<)AQB|
2

=
180◦ − (180◦ − |<)BCA|)

2
= γ/2.

We may then compute |<)ASB| = 90◦ − |<)SAB| = 90◦ −γ/2.
Consider the triangle AIB. The angles <)BAI and <)ABI have measures α/2 and β/2, re-

spectively, so we get

|<)AIB| = 180◦ −α/2− β/2 = 180◦ +γ/2− (α + β +γ)/2 = 180◦ +γ/2− 180◦/2 = 90◦ +γ/2.

Now, clearly, the point S lies outside the triangle ABC and I lies inside, hence the points I
and S lie on opposite sides of the line AB. Since

|<)ASB|+ |<)AIB| = (90◦ −γ/2) + (90◦ +γ/2) = 180◦,

the points A, I , B and S lie on a circle. Similarly, the points A, I , C and R lie on a circle.
Since |<)ABS | = 90◦ and |<)ACR| = 90◦, the line segments AS and AR are diameters of the

two circles, meaning
|<)AIS |+ |<)AIR| = 90◦ + 90◦ = 180◦,

which implies that the three points R, I and S lie on a single line.
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Remark. It is a well-known fact that the points A, I , B lie on a circle with circumcenter Q.
This is a useful property worth remembering. Using this, one can quickly see that S also lies
on this circle, as AS is the diameter.



Problem 4.
Let ABCD be a convex quadrilateral such that there is a point P inside ABCD for which
|AP | = |AB|, |DP | = |DC|, |<)P BA| = 2|<)PAD | and |<)P CD | = 2|<)PDA|. Let O be the circumcen-
ter of triangle P BC and let M be the midpoint of OP . Prove that |MA| = |MD |.

(Michal Pecho)

Solution

Points A and O lie on the perpendicular bisector of BP and points D and O lie on the
perpendicular bisector of CP . An angle chase yields:

|<)OAD | = |<)OAP |+ |<)PAD |
= 90◦ − |<)BPA|+ |<)PAD |
= 90◦ − |<)P BA|+ |<)PAD |
= 90◦ − 2 · |<)PAD |+ |<)PAD |
= 90◦ − |<)PAD |.

Analogously |<)ODA| = 90◦ − |<)PDA|. Let Z be the reflection of O across AD. Note that
OZ ⊥ AD. From symmetry, we get that |<)ZAD | = |<)OAD | and |<)ZDA| = |<)ODA|. Therefore

|<)ZAP | = |<)ZAD |+ |<)PAD | = 90◦ − |<)PAD |+ |<)PAD | = 90◦,
|<)ZDP | = |<)ZDA|+ |<)PDA| = 90◦ − |<)PDA|+ |<)PDA| = 90◦,

which means that Z lies on the circumcircle of triangle PDA and P Z is its diameter.
Therefore, the midpoint N of segment P Z lies on the perpendicular bisector of AD. Since
MN ∥ OZ (as MN is a midline in △OPZ) and OZ ⊥ AD, we get that MN ⊥ AD. Thus,
line MN coincides with the perpendicular bisector of AD, so M lies on it, which implies
|MA| = |MD |.
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Solution II
Let P ′ and P ′′ be the reflections of P across the line AD and across the midpoint of AD,

respectively. From the given angle conditions, we have

|<)P ′DP | = 2 · |<)ADP | = |<)DCP | = |<)DPC|,

so P ′D ∥ P C. Since the line DO is the perpendicular bisector of CP , we have DO ⊥ P C.
Therefore, P ′D ⊥DO. Analogously, we can see that P ′A⊥ AO.

Let S be the midpoint of AD. Since S is also the midpoint of P P ′′, the segment SM is a mi-
dline in triangle OP P ′′, implying SM ∥ P ′′O. Thus, to show that M lies on the perpendicular
bisector of AD (which passes through S), it suffices to show that P ′′O ⊥ AD.

We can now use the well-known fact that the diagonals of a quadrilateral P ′′AOD are
perpendicular if and only if the sums of the squares of its opposite sides are equal: |P ′′D |2 +
|AO|2 = |P ′′A|2 + |DO|2. Using symmetry, we get:

|P ′′D |2 + |AO|2 = |P ′A|2 + |AO|2 = |P ′O|2 = |P ′D |2 + |DO|2 = |P ′′A|2 + |DO|2,

which implies P ′′O ⊥ AD and completes the proof.
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Problem 5.
Let ABCD be a convex quadrilateral such that there is a point E on the side AB satisfying
|<)ADE| = |<)DEA| = |<)DCE| and |<)ECB| = |<)BEC| = |<)EDC|. Prove that one of the common
tangents to the incircles of triangles AED and BEC is parallel to the line CD.

(Patrik Bak)

Solution

Let I and J be the incenters of triangles AED and BEC, respectively. Notice that

|<)EID | = 180◦ − |<) IDE| − |<)DEI | = 180◦ − |<)DEA| = 180◦ − |<)DCE|,

so the points C, D, E, I are concyclic. Analogously, the points C, D, E, J are concyclic. Hence,
all five points C, D, E, I , J are concyclic.

One of the common tangents of the two incircles is the line AB – therefore another tan-
gent line is the reflection of AB with respect to the line IJ . Let P , Q be the intersections of
the reflected line with lines ED and EC, respectively. We will prove that PQ and CD are
parallel by showing that |<)EPQ| = |<)EDC|.

Let R, S be the intersections of the line IJ with lines ED and EC, respectively. We calcu-
late:

|<)ERS | = |<)RIE|+ |<)REI | = |<) JIE|+ |<)DEI | = |<)ECJ |+ |<)EDI | =

|<)CEJ |+ |<)EJI | = |<)SEJ |+ |<)SJE| = |<)RSE|.

As PQ is the reflection of AB with respect to IJ , all three lines are parallel or concurrent.

a) We first look at the case where PQ, AB and IJ are all parallel. Then, by an angle chase,
we get

|<)EPQ| = |<)ERS | = |<)ESR| = |<)BES | = |<)BEC| = |<)EDC|

so the lines PQ and CD are parallel.

b) Suppose that the lines PQ, AB and IJ meet at a single point T . Then, by an angle chase,
we get

|<)EPQ| = |<)ET P |+ |<)P ET | = 2 · |<)ETR|+ |<)RET | = |<)ETR|+ (|<)ETR|+ |<)RET |) =

|<)ETR|+ |<)ERS | = |<)ET S |+ |<)EST | = |<)BEC| = |<)EDC|.

Thus, in this case also, PQ and CD are parallel.

We have shown that in all cases PQ and CD are parallel, as we wanted to prove.



Problem 6.
Let ABC be an acute scalene triangle with incenter I . Let M be the midpoint of arc BAC of
the circumcircle of triangle ABC. Points K and L lie on segments BM and CM, respectively,
such that AK is tangent to the circumcircle of triangle AIC and AL is tangent to the circum-
circle of triangle AIB. Prove that the points K , L, I are collinear.

(Patrik Bak)

Solution

Let O be the circumcenter of triangle ABC and let K ′ be the intersection of the line IO
with the tangent to the circumcircle of triangle AIC at point A. We will prove that K ′ lies
on the line BM. This will imply that K ′ = K , and consequently, that points K , I , and O are
collinear. By analogous reasoning, it will follow that L, I , and O are collinear, which will
complete the proof.

Let D be the second intersection of the line OI and the circumcircle of triangle AIB. By
a simple angle calculation, we get

|<)BDO| = |<)BDI | = |<)BAI | = 1
2
|<)BAC| = 1

2
|<)BMC| = |<)BMO|,

where we used that O lies on the angle bisector of <)BMC. As |<)BDO| = |<)BMO|, points
B, D, M, O lie on a circle.

Let X be the second intersection of the tangent to the circumcircle of triangle AIC at
point A and the circumcircle of triangle ABC. Let S be the circumcenter of triangle AIC.
It is well known that S is the midpoint of arc AC not containing B of the circumcircle of
triangle ABC. Since XA is tangent to the circle AIC, we must have AS ⊥ AX, and therefore
X, O, S are collinear.
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By an angle chase, we get

|<)ADO| = |<)ADI | = |<)ABI | = |<)ABS | = |<)AXS | = |<)AXO|,

hence we have that A, D, X, O lie on a circle.



Denote by ω1 the circumcircle of triangle ABC, ω2 the circle through points B, D, M, O
and ω3 the circle through A, D, X, O. The line AX is the radical axis of circles ω1 and ω3.
The line DO is the radical axis of circles ω2 and ω3. Therefore K ′, which is the intersection
of lines AX and DO, is the radical center of circles ω1, ω2 and ω3. Hence, K ′ also lies on the
radical axis BM of circles ω1 and ω2. Since K ′ lies on BM, it follows that K ′ = K and that K ,
I , O are collinear, as discussed in the first paragraph.
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Solution II (Using Pascal’s Theorem)
Let O be the circumcenter of triangle ABC. We will prove that points K,O,I are collinear.

Analogously, points L,O,I are collinear, which completes the proof.
Let N be the midpoint of the arc BC not containing A of the circumcircle of triangle

ABC. Clearly, points M, O, N are collinear, and points A, I , N are collinear.
Let S be the circumcenter of AIC. It is well known that it is the midpoint of the arc AC

not containing B and lies on the line BI . Let X be the second intersection of the line AK with
the circumcircle of △ABC. Since XA is tangent to the circle AIC, we must have AS ⊥ AX,
and therefore X, O, S are collinear.

Now we can apply Pascal’s theorem to the self-intersecting hexagon AXSBMN to obtain
that the intersection points of pairs of lines (AX,BM), (XS,MN ), and (SB,NA) are collinear.
These are points K , O, I , respectively, so we are done.
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